
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 5: Process
Synchronization

5.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 5: Process Synchronization

 Background
 The Critical-Section Problem
 Peterson’s Solution
 Synchronization Hardware
 Mutex Locks
 Semaphores
 Classic Problems of Synchronization
 Monitors
 Synchronization Examples
 Alternative Approaches

5.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To present the concept of process synchronization.
 To introduce the critical-section problem, whose solutions

can be used to ensure the consistency of shared data
 To present both software and hardware solutions of the

critical-section problem
 To examine several classical process-synchronization

problems
 To explore several tools that are used to solve process

synchronization problems

5.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

 Processes can execute concurrently
 May be interrupted at any time, partially completing execution

 Concurrent access to shared data may result in data inconsistency
 Maintaining data consistency requires mechanisms to ensure the

orderly execution of cooperating processes
 In this chapter, what we discuss for “processes” almost always applies

to “threads” as well
 Can change “processes” to “threads”

 Illustration of the problem:

Suppose that we wanted to provide a solution to the consumer-
producer problem that fills all the buffers. We can do so by having an
integer counter that keeps track of the number of full buffers.
Initially, counter is set to 0. It is incremented by the producer after it
produces a new buffer and is decremented by the consumer after it
consumes a buffer.

5.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer

while (true) {
/* produce an item in next produced */

while (counter == BUFFER_SIZE) ;

/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

5.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Consumer

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}

5.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Race Condition
 counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

 counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2

 Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6}
S5: consumer execute counter = register2 {counter = 4}

 Race condition – a situation when:
 several processes access the same data concurrently
 the outcome of the execution depends on the order of the accesses

5.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section Problem

 Consider system of n processes {P0, P1, … ,Pn-1}
 Each process has critical section segment of code

 Process may be changing common variables, updating
table, writing file, etc

 When one process in critical section, no other is allowed to
be in its critical section

 Critical section problem is to design protocol to solve this

 Each process
 must ask permission to enter critical

section in entry section,
 may follow critical section with exit

section,
 then remainder section

5.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Diagram of Critical Section Problem

P0 P1 Pn-1

Shared Data

• Each process Pi has its own critical section
• Accesses to shared data only in CS

• Lock – will consider later
• In shared data, accessible by all
• Often 1 lock for all n processes
• Guards access to all critical sections
• Ensures mutual exclusivity

. . .

5.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Requirements to Critical-Section Problem
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the n processes

1. Mutual Exclusion
 Only one process can be in the critical section at a time –
 otherwise what critical section?

2. Progress
 Intuition: No process is forced to wait for an available resource –
 otherwise very wasteful.

 Formal: If no process is executing in its critical section and there exist some processes that
wish to enter their critical section, then the selection of the processes that will enter the critical
section next cannot be postponed indefinitely

3. Bounded Waiting
 Intuition: No process can wait forever for a resource –
 otherwise an easy solution: no one gets in

 Formal: A bound must exist on the number of times that other processes are allowed to enter
their critical sections after a process has made a request to enter its critical section and before
that request is granted

Some material taken from http://www.cs.cmu.edu/~gkesden/412-18/fall01/ln/lecture6.html

5.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of solutions to CS problem

 Software-based
 Hardware-based

5.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Software-based solution to CS
 Will consider 2-process case first:

 Processes Pi and Pj
 Will examine various incorrect and correct solutions next

 Solutions assume that the load and store machine-language
instructions are atomic; that is, cannot be interrupted
 In general, this is not true for modern architectures

 Peterson’s algorithm (we will consider shortly) does not work in general
 Can work on some machines correctly, but can fail on others

 But good algorithmic description, allows to understand various issues
 The two processes share two variables:

 int turn;

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the CS
 The flag array is used to indicate if a process is ready to enter the CS

 flag[i] = true implies that process Pi is ready!

5.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm 1

 Case: 2 processes Pi and Pj only
 Shared Variables:

 var turn: (0..1);
initially turn = 0;

 turn = i  Pi can enter its critical section
 Process Pi

while(true) {
while (turn != i) no-op;

critical section
turn = j;

remainder section
}

 Satisfies mutual exclusion, but not progress

 If it is turn i and if Pi is not in its CS, then if Pj wants to enter its CS,
then Pj has to wait – but why wait?: Pi is not in its CS

5.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm 2

 Shared Variables
 var flag: array (0..1) of boolean;

initially: flag[0] = flag[1] = false;
 flag[i] = true  Pi ready to enter its critical section

 Process Pi
while(true) {

flag[i] = true;
while (flag[j]) no-op;

critical section
flag[i]= false;

remainder section
}

 Can block indefinitely… Progress requirement not met.
 Both can set flag[] to true and then both block busy-waiting

5.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm 3
 Shared Variables

 var flag: array (0..1) of boolean;
initially flag[0] = flag[1] = false;

 flag[i] = true  Pi ready to enter its critical section
 Process Pi

while(true) {
while (flag[j]) no-op;
flag[i] = true;

critical section
flag[i] = false;

remainder section
}

 Does not satisfy mutual exclusion requirement …
 (1) Pj flag[j]=false;
 (2) Pi moves to after while, before flag[i] = true;
 (3) Pj passes its while; sets flag[j] = true; enters its CS
 (4) Pi sets flag[i] = true; enters its CS => both in their CSes

5.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm 4: Peterson’s solution for Process Pi

do {

flag[i] = true;
turn = j;
while (flag[j] && turn == j);

critical section
flag[i] = false;

remainder section
} while (true);

 Provable that the three CS requirement are met:
1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2. Progress requirement is satisfied
3. Bounded-waiting requirement is met

5.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

(Lamport’s) “Bakery Algorithm”

 Critical section for n processes

 Key idea: Before entering its CS, the process receives a number (=token)

 Holder of the smallest number enters the CS

 Like in a bakery, get a number at the entrance, served according to it

 If processes Pi and Pj receive the same number,

 if i ≤ j, then Pi is served first; else Pj is served first

 Will say Pi has higher priority than Pj

 The numbering scheme always generates numbers in non-decreasing order
of enumeration;

 For example: 1,2,3,3,3,3,4,4,5,5

5.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bakery Algorithm (cont.)
 Notation

 Lexicographic order

 (ticket#, process_id#)

 (a,b) < (c,d), same as: if (a<c or ((a=c) and (b<d))

 Shared Data

var

choosing: array[0..n-1] of boolean; (initialized to false)

number: array[0..n-1] of integer; (initialized to 0)

5.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bakery Algorithm (cont.)

while(true) {
choosing[i] = true;
number[i] = max(number[0], number[1],…,number[n-1]) +1;
choosing[i] = false;

for (int j = 0; j <= n-1; j++)
{

// wait until process Pj receives its number (i.e, token)
while (choosing[j])

; // no-op

// wait until all processes
// (a) with smaller number, or
// (b) with the same number but with higher priority
// finish their work

while (number[j] != 0 && (number[j] ,j) < (number[i],i))
; // no-op

}

critical section
number[i]= 0;
remainder section

}

Code for process Pi

5.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Hardware

 Many systems provide hardware support for implementing the
critical section code.

 All solutions below based on idea of locking
 Protecting critical regions via locks

 Uniprocessors – could disable interrupts
 Currently running code would execute without preemption

 That is, without being interrupted
 Generally too inefficient on multiprocessor systems

 OSes using this are not broadly scalable
 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptible
 test_and_set instruction

 test memory word and set value
 compare_and_swap instruction

 swap contents of two memory words

5.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-section Problem Using Locks

while (true) {

acquire lock

critical section

release lock

remainder section

}

5.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

test_and_set Instruction

Definition:
boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = true;

return rv;

}

1. Executed atomically – cannot be interrupted in the middle
2. Returns the original value of passed parameter
3. Set the new value of passed parameter to true.

5.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using test_and_set()

 Shared Boolean variable lock
 initialized lock = false
 unlocked initially

 Solution:
while (true) {

while (test_and_set(&lock))

; // wait until lock becomes equal false

// here lock=true

/* critical section */

lock = false;

/* remainder section */

}

 Bounded waiting is not satisfied
 Other processes might keep acquiring the lock first

5.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-waiting Mutual Exclusion with test_and_set
 The common data structures:

 boolean waiting[n]; // initialized to false
 boolean lock; // initialized to false

while (true) {
waiting[i] = true; // wants the lock
key = true;
while (waiting[i] && key)

key = test_and_set(&lock); // trying to get the lock
// got the lock here
waiting[i] = false;

/* critical section */

j = (i + 1) % n;

while ((j != i) && !waiting[j]) // find the next in sequence Pj waiting for the lock
j = (j + 1) % n;

if (j == i) lock = false; // no one is waiting for the lock, simply release it
else waiting[j] = false; // let Pj go into its CS, “lock” is kept locked
/* remainder section */

}

 Satisfies all the three CS requirements, less fair than Lamport’s Bakery algorithm

5.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

compare_and_swap Instruction
Definition:
int compare_and_swap(int *value, int expected, int new_value)

{

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

}

1. Executed atomically
2. Returns the original value of passed parameter “value”
3. Set the variable value to new_value but only if value ==expected

 The swap takes place only under this condition

5.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using compare_and_swap

 Shared integer lock
 initialized to lock=0; // unlocked

 Solution:
while (true) {

while (compare_and_swap(&lock, 0, 1) != 0)

; // wait for lock to be 0

// here lock = 1

/* critical section */

lock = 0;

/* remainder section */

}

 Bounded waiting is not satisfied

5.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mutex Locks

 Previous solutions are complicated and generally inaccessible
to application programmers

 OS designers build software tools to solve critical section
problem

 Simplest is mutex lock
 Protect a critical section by:

 first acquire() a lock

 then release() the lock
 Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic
 Usually implemented via hardware atomic instructions

 But this solution requires busy waiting
 This lock therefore called a spinlock

5.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

acquire() and release()

 acquire() {
while (!available)

; /* busy wait */

available = false;

}

 release() {

available = true;

}

 while (true) {

acquire lock

critical section

release lock

remainder section

}

5.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore
 Synchronization tool that provides more sophisticated ways (than Mutex locks)

for process to synchronize their activities.
 Semaphore S – integer variable
 Can only be accessed via two indivisible (atomic) operations

 wait() and signal()
 Originally called P() and V()-- important to remember, used often

 P() (wait) – from Dutch proberen: “to test”
 V() (signal) – from Dutch verhogen: “to increment”

 Definition of the wait() operation

wait(S) {

while (S <= 0)

; // Notice, busy waits, spending CPU cycles, not (always) good
S--;

}

 Definition of the signal() operation

signal(S) {

S++;

}

5.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Usage

 Counting semaphore – integer value can range over an unrestricted domain
 Can control access to resource that has a finite number of instances
 Initialized to the number of resources available

 Binary semaphore – integer value can range only between 0 and 1
 Same as a mutex lock

 Can solve various synchronization problems
 Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0
P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

5.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementing a counting semaphore via binary

 Can implement a counting semaphore S via binary semaphores
 Data Structures

int S = n; // semaphore count

mutex S_guard = 1; // initial value 1 (FREE)

mutex delay = 0; // for delaying other processes

Solution adopted from Jim Mooney of WVU.

5.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementing S
wait()
{

wait(S_guard);
S --;

if (S <= -1) { // check if someone's already waiting on this sem
signal(S_guard); // relesase S_guard
wait(delay); // join the waiting queue

}
else signal(S_guard);

}

signal()
{

wait(S_guard);
S = ++;

if (S < 0) signal(delay);

signal(S_guard);
}

5.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation

 Operations wait() and signal() must be executed atomically

 Thus, the implementation becomes the critical section problem

 wait and signal code are placed in the critical section

 Hence, can now have busy waiting in critical section implementation
 If critical section rarely occupied

 Little busy waiting
 But, applications may spend lots of time in critical sections

 Hence, the busy-waiting approach is not a good solution

5.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

No Busy Waiting Implementation of Semaphore

 A waiting queue is associated with each semaphore
 It stores the processes waiting on the semaphore

 typedef struct{

int value;

struct process *list; // waiting queue

} semaphore;

 Two operations:
 block – place the process invoking the operation on the appropriate

waiting queue
 wakeup – remove one of processes in the waiting queue and place it

in the ready queue

5.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation with no Busy waiting (Cont.)
wait(semaphore *S) {

S->value--;

if (S->value < 0) {
add this process to S->list;

block(); //suspends self, sleeps, avoids CPU cycles

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {
remove a process P from S->list;

wakeup(P);

}

}

 S->value can be negative

 |S->value| is then the number of processes waiting on the semaphore

 It is never negative in classical definition

5.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock and Starvation
 Synchronization problems
 Deadlock – two or more processes are waiting indefinitely for an

event that can be caused by only one of the waiting processes
 Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

 Starvation (= indefinite blocking)
 Related to deadlocks (but different)
 Occurs when a process waits indefinitely in the semaphore queue
 For example, assume a LIFO semaphore queue

 Processed pushed first into it might not get a chance to execute
 Priority Inversion

 A situation when a higher-priority process needs to wait for a
lower-priority process that holds a lock

5.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Classical Problems of Synchronization

 Classical problems used to test newly-proposed synchronization
schemes
 Bounded-Buffer Problem
 Readers and Writers Problem
 Dining-Philosophers Problem

5.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

The Bounded-Buffer Problem

 Producer and Consumer processes
 Buffer pool consists of n buffers

 each can hold one item
 Shared data structures:

int n;

semaphore mutex = 1; // Guards the access to the buffer pool

semaphore empty = n; // Counts the number of empty buffers

semaphore full = 0; // Counts the number of full buffers

5.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

 The structure of the producer process
while (true) {

...
/* produce an item in next_produced */

...

wait(empty); // suspend self if the buffer is full

wait(mutex); // get access to the buffer

...
/* add next produced to the buffer */

...

signal(mutex); // release the lock to the buffer

signal(full); //

}

5.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

 The structure of the consumer process
while (true) {

wait(full); //=P() suspend self if the buffer is empty

wait(mutex); // get access to the buffer

...
/* remove an item from buffer to next_consumed */

...

signal(mutex); // V() release the lock to the buffer

signal(empty);

...
/* consume the item in next consumed */

...
}

5.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Discussion

 A symmetry
 Producer does: P(empty), V(full)
 Consumer does: P(full), V(empty)

 Producer producing full buffers for consumer
 Consumer producing empty buffers for the producer

 Is order of P’s important?
 Yes! Can cause deadlock

 Is order of V’s important?
 No, except that it might affect scheduling efficiency

5.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

The Readers-Writers Problem

 A data set is shared among a number of concurrent processes:
 Readers – only read the data set

 they do not perform any updates
 Writers – can both read and write

 Problem
 Allow multiple readers to read (shared data) at the same time
 Only one single writer can access shared data at the same time

 Readers cannot read during this time
 Other writers cannot write during this time

5.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)

 Shared Data:
 Data set

semaphore rw_mutex = 1; // mutual exclusion for writers

semaphore mutex = 1; // guards read_count

int read_count = 0; // #processes currently reading the object

 The structure of a writer process
while (true) {

wait(rw_mutex);

...
/* writing is performed */

...

signal(rw_mutex);

}

5.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)
 The structure of a reader process

while (true) {
wait(mutex);
read_count ++;
if (read_count == 1)

wait(rw_mutex);

signal(mutex);

...
/* reading is performed */

...

wait(mutex);
read_count--;
if (read_count == 0)

signal(rw_mutex);

signal(mutex);

}

 Writers can starve in this solution
 How would you design a solution where writers don’t starve?

5.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

The Dining-Philosophers Problem

 Philosophers spend their lives alternating: thinking and eating
 Occasionally try to pick up 2 chopsticks (left and right) to eat from bowl

 One chopstick at a time
 Need both chopsticks to eat, then release both when done
 Problem: not enough chopsticks for all

 N philosophes and N chopsticks (not 2N)
 The case of 5 philosophers (and 5 chopsticks only)

 Shared data
 Bowl of rice (data set)
 Semaphore chopstick [5] initialized to 1 (free)

5.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm

 The structure of Philosopher i:
while (true) {

wait (chopstick[i]); // wait to get the left stick
wait (chopstick[(i + 1) % 5]); // get the right

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

};

 What is the problem with this algorithm?
 A deadlock is possible!

5.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm (Cont.)

 Deadlock handling possibilities:
 Allow at most 4 philosophers to be sitting simultaneously at the table.
 Allow a philosopher to pick up the chopsticks only if both are available

 Picking must be done in a critical section
 Use an asymmetric solution:

 an odd-numbered philosopher
– picks up first the left and then right chopstick

 even-numbered philosopher
– picks up first the right and then left chopstick

5.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Problems with Semaphores
 Incorrect use of semaphore operations:

 Can occur relatively easily and be difficult to detect
 Timing errors – could occur only under certain circumstances and

won’t occur otherwise
– Run a program and it crashes, run it again and it doesn’t

 Can be more complex to debug
 Wrong order: signal (mutex) …. wait (mutex)
 Wrong calls: wait (mutex) … wait (mutex)
 Omitting of wait (mutex) or signal (mutex) (or both)

 Deadlock and starvation are possible
 How to deal with this?

 Researchers developed high-level language constructs
 Monitor type – one such construct

5.57 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitors
monitor monitor-name
{
// shared variable declarations
function P1 (…) { … }
…
function Pn (…) {……}
initialization_code (…) { … }

}

 Recall that: an Abstract data type (ADT) -- encapsulates data
 internal variables only accessible by code within the procedure

 A monitor type – is an ADT that provides a convenient and effective
mechanism for process synchronization
 For several concurrent processes
 Encapsulation

 Local variables accessed only via local functions
 Local functions access only local vars and params

 Only one process at a time may be active within the monitor
 A lock guards shared data
 Hence, the programmer does not need to code this constraint

5.58 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schematic view of a Monitor

5.59 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables
 Monitors not powerful enough to model some synchr. schemes

 Hence, additional synchr. mechanisms are added:
 Provided by the condition construct

 condition x, y;

 Two operations are allowed on a condition variable x:

 x.wait()

 A process that invokes the operation is suspended (sleeps)

– until x.signal()is called

Lets other processes enter the monitor
– releases the lock to shared data, atomically with sleep

 x.signal()

 Resumes one of processes (if any) that invoked x.wait()

 If no x.wait() was called, then x.signal()has no effect x

5.60 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor with Condition Variables

5.61 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables Choices
 Issues with monitors: assume

 Process P invokes x.signal(), and

 Process Q is suspended in x.wait()

 Who proceeds next?
 Both Q and P cannot execute in parallel
 Because they are within a monitor

 Options include
 Signal and wait – P waits until Q either leaves the monitor or it waits

for another condition
 Signal and continue – Q waits until P either leaves the monitor or it

waits for another condition
 Both have pros and cons – language implementer can decide

5.62 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 Each philosopher i invokes the operations
 pickup() and putdown() in an infinite loop:

DiningPhilosophers.pickup(i);

// EAT

DiningPhilosophers.putdown(i);

 No deadlocks, but starvation is possible

Monitor Solution to Dining Philosophers

5.63 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Dining Philosophers (Cont.)
monitor DiningPhilosophers
{

//-- shared data, local to the monitor --
enum {THINKING; HUNGRY, EATING) state [5];
condition self[5]; // for suspending self when chopsticks are not available

//-- initialization code --
initialization_code() {

for (int i = 0; i < 5; i++)
state[i] = THINKING;

}

5.64 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Dining Philosophers (cont.)
//-- local functions --
void pickup (int i) {

state[i] = HUNGRY;
test(i); // try to start eating.
if (state[i] != EATING) // if cannot start eating -- wait

self[i].wait; // suspend self -- until a direct neighbor bumps you
}

// test(i) will set state of i to EATING only if:
// (a) i is hungry and (b) its left & right neighbors are not eating
void test (int i)
{

if ((state[i] == HUNGRY) && // access to shared data is protected automatically
(state[(i + 1) % 5] != EATING) &&
(state[(i + 4) % 5] != EATING))
{

state[i] = EATING;
self[i].signal(); //release i if it is waiting

}
}

5.65 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Dining Philosophers (cont.)
void putdown (int i) {

state[i] = THINKING;
// test the left/right neighbors (who perhaps are waiting for your chopsticks)
test((i + 1) % 5);
test((i + 4) % 5);

}
}
 Recall what test(i) does:

// test(i) will set state of i to EATING only if:
// (a) i is hungry and (b) the left & right neighbors are not eating
void test (int i)
{

if ((state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING) &&
(state[(i + 4) % 5] != EATING))
{

state[i] = EATING;
self[i].signal(); //release i if it is waiting

}
}

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 5

	Chapter 5: Process Synchronization
	Chapter 5: Process Synchronization
	Objectives
	Background
	Producer
	Consumer
	Race Condition
	Critical Section Problem
	Diagram of Critical Section Problem
	Requirements to Critical-Section Problem
	Types of solutions to CS problem
	Software-based solution to CS
	Algorithm 1
	Algorithm 2
	Algorithm 3
	Algorithm 4: Peterson’s solution for Process Pi
	(Lamport’s) “Bakery Algorithm”
	Bakery Algorithm (cont.)
	Bakery Algorithm (cont.)
	Synchronization Hardware
	Solution to Critical-section Problem Using Locks
	test_and_set Instruction
	Solution using test_and_set()
	Bounded-waiting Mutual Exclusion with test_and_set
	compare_and_swap Instruction
	Solution using compare_and_swap
	Mutex Locks
	acquire() and release()
	Semaphore
	Semaphore Usage
	Implementing a counting semaphore via binary
	Implementing S
	Semaphore Implementation
	No Busy Waiting Implementation of Semaphore
	Implementation with no Busy waiting (Cont.)
	Deadlock and Starvation
	Classical Problems of Synchronization
	The Bounded-Buffer Problem
	Bounded Buffer Problem (Cont.)
	Bounded Buffer Problem (Cont.)
	Discussion
	The Readers-Writers Problem
	Readers-Writers Problem (Cont.)
	Readers-Writers Problem (Cont.)
	The Dining-Philosophers Problem
	 Dining-Philosophers Problem Algorithm
	Dining-Philosophers Problem Algorithm (Cont.)
	Problems with Semaphores
	Monitors
	Schematic view of a Monitor
	Condition Variables
	 Monitor with Condition Variables
	Condition Variables Choices
	Slide Number 62
	Solution to Dining Philosophers (Cont.)
	Solution to Dining Philosophers (cont.)
	Solution to Dining Philosophers (cont.)
	End of Chapter 5

